
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

1. INTRODUCTION

The increasing performance of microprocessor and

development of various sensors enable mobile robots to be
used for various areas. In indoor cases, personal service robots
perform the missions of museum tour guide, room cleaning
and nursing for the elderly. In outdoor cases, mobile robots
have been used for the purpose of patrol, reconnaissance,
surveillance and exploring planets, etc. The remote-controlled
mobile robots that are operated by the remote operators should
be able to navigate with commanded translational and
rotational velocities and perceive static and varying
environments and avoid dynamic obstacles such as vehicles or
pedestrians.

Mobile robots often find themselves in a situation where
they must find a trajectory to another position in their
environments, subject to constraints posed by obstacles and
the capabilities of the robot itself. Rapidly-exploring Random
Trees (RRTs) are a recently developed representation on which
fast continuous domain path planners can be based and a
randomized data structure that is designed for a broad class of
a path planning problems [1-3]. The advantage of RRTs is that
they can be directly applied to nonholonomic and
kinodynamic planning. Moreover, RRTs has been used to
solve nonlinear control problems and extended to the case of
hybrid systems [4-5].

The original RRT is iteratively expanded by applying
control inputs that drive the system slightly toward
randomly-selected states, as opposed to requiring
point-to-point convergence, as in the probabilistic roadmap
approach. It is generally known that the performance of RRTs
can be improved depending on the selection of the metrics in
choosing the nearest vertex and bias techniques in choosing
random states [6].

We designed a path planning algorithm based on the RRT
method for a remote-controlled mobile robot. First, we

considered a bias technique that is goal-biased Gaussian
random distribution along the command directions. Secondly,
we selected the metric based on a weighted Euclidean distance
of random states and a weighted distance from the goal region.
It can save the effort to explore the unnecessary regions and
help the mobile robot to find a feasible trajectory as fast as
possible. Finally, the constraints of the actuator should be
considered to apply the algorithm to physical mobile robots,
so we select control inputs distributed with commanded inputs
and constrained by the maximum rate of input change instead
of random inputs. Simulation results demonstrate that the
proposed algorithm is significantly more efficient for planning
than a basic RRT planner. It reduces the computational time
needed to find a feasible trajectory and can be practically
implemented in a remote-controlled mobile robot.

The remainder of this paper is organized as follows.
Section 2 introduces a brief formulation of the RRT algorithm.
Section 3 considers the kinematics and practical
implementation of a RRT for a remote-controlled mobile robot.
Section 4 presents the simulation results. Finally, some
conclusions are presented in Section 5.

2. RRT ALGORITHM

2.1 Basic RRT Algorithm

2.1.1 Problem Description

The class of problems considered in RRTs can be
formulated in terms of six components [3]:

1) State Space: A bounded manifold, nRX ⊂
2) Boundary Values: Xxinit ∈ and XX goal ⊂

3) Collision Detector: A function, →XD : },{ falsetrue ,
that determines whether global constraints are satisfied
from state x . This could alternatively be a real-valued
function that indicates distance from the constraint

The Implementation of RRTs for a Remote-Controlled Mobile Robot

Chi-Won Roh*, Woo-Sub Lee** , Sung-Chul Kang*** and Kwang-Won Lee****
* Intelligent Robotics Research Center, KIST, Seoul, Korea

(Tel : +82-2-958-6816; E-mail: cwroh@kist.re.kr)
** Intelligent Robotics Research Center, KIST, Seoul, Korea

(Tel : +82-2-958-6724; E-mail: robot@kist.re.kr)
*** Intelligent Robotics Research Center, KIST, Seoul, Korea

(Tel : +82-2-958-5589; E-mail: kasch@kist.re.kr)
**** Department of Electronics Engineering, Ajou University, Suwon, Korea

(Tel : +82-031-219-2480; E-mail: lkw@ajou.ac.kr)

Abstract: The original RRT is iteratively expanded by applying control inputs that drive the system slightly toward

randomly-selected states, as opposed to requiring point-to-point convergence, as in the probabilistic roadmap approach. It is
generally known that the performance of RRTs can be improved depending on the selection of the metrics in choosing the nearest
vertex and bias techniques in choosing random states. We designed a path planning algorithm based on the RRT method for a
remote-controlled mobile robot. First, we considered a bias technique that is goal-biased Gaussian random distribution along the
command directions. Secondly, we selected the metric based on a weighted Euclidean distance of random states and a weighted
distance from the goal region. It can save the effort to explore the unnecessary regions and help the mobile robot to find a feasible
trajectory as fast as possible. Finally, the constraints of the actuator should be considered to apply the algorithm to physical mobile
robots, so we select control inputs distributed with commanded inputs and constrained by the maximum rate of input change
instead of random inputs. Simulation results demonstrate that the proposed algorithm is significantly more efficient for planning
than a basic RRT planner. It reduces the computational time needed to find a feasible trajectory and can be practically implemented
in a remote-controlled mobile robot.

Keywords: RRT, Path Planning, Obstacle Avoidance, Mobile Robot, Bias Technique, Metric Choice

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

boundary.
4) Inputs: A set, U , which specifies the complete set of

controls or actions that can affect the state.
5) Incremental Simulator: Given the current state,)(tx ,

and inputs applied over a time interval,
}'|)'({ tttttu ∆+≤≤ , the incremental simulator yields

)(ttx ∆+ . This usually occurs through numerical
integration of a state transition equation,),(uxfx =& .

6) Metric: A real-valued function,),0[: ∞→× XXρ
which specifies the distance between pairs of points in X
(however, ρ is not necessarily symmetric).

Trajectory planning will generally be viewed as a search in

a state space, X , for a control u that brings the system
from an initial state,

initx to a goal region XX goal ⊂ or

goal state XX goal ∈ . It is assumed that a complicated set of

global constraints is imposed on X , and any solution path
must keep the state within this set. A collision detector reports
whether a given state x satisfies the global constraints. Local,
differential constraints are imposed through the definition of a
set of inputs (or controls) and an incremental simulator. Taken
together, these two components specify possible changes in
state. The incremental simulator can be defined by numerical
integration of a state transition equation of the form

),(uxfx =& or can simply be achieved by a simulation
software package. Finally, a metric is defined to indicate the
closeness of pairs of points in the state space.

2.1.2 Basic RRT Algorithm
The basic RRT construction algorithm is given in Table 1

[1]. A simple iteration is performed in which each step
attempts to extend the RRT by adding a new vertex that is
biased by a randomly-selected state, Xxrand ∈ . The EXTEND
function selects the nearest vertex already in the RRT to x .
The “nearest” vertex is chosen according to the metric, ρ .
The function NEW_STATE makes a motion toward x by
applying an input Uu ∈ for some time increment t∆ . This
input can be chosen at random, or selected by trying to all
possible inputs and choosing the one that yields a new state as
close as possible to the sample,

randx (if U is infinite, then
a finite approximation or analytical technique can be used).
NEW_STATE implicitly uses the collision detection function
to determine whether the new state and all intermediate states
satisfy the global constraints. For many problems, this can be
performed quickly (“almost constant time”) using incremental
distance computation algorithms by storing the relevant
invariants with each of the RRT vertices. If NEW_STATE is
successful, the new state and input are represented in

newx
and

newu , respectively. Figure 1 shows an RRT grown from
the center of a square region in the plane. In this example,
there are no differential constraints (motion in any direction is
possible from any point). The incremental construction
method biases the RRT to rapidly explore in the beginning,
and then converge to a uniform coverage of the space. The
exploration is naturally biased towards vertices that have
larger Voronoi regions. This causes the exploration to occur
mostly on the unexplored portion of the state space.

In addition to growing a tree from the starting state, many
RRT implementations grow a second tree from the goal tree.
Such trees grow in four steps.

1) Grow start-tree towards a random unexplored
configuration.

2) Grow goal-tree towards a random unexplored
configuration.

3) Grow start tree towards goal tree. At each iteration,
select a random vertex in the goal tree to grow towards it.

4) Grow goal tree towards start tree. A solution path is
found when the two trees finally connect.

 Table 1 The Basic RRT Algorithm

Build_RRT (
initx)

 T.init (
initx);

 For k = 1 to K do

randx = RANDOM_STATE();

 EXTEND (T,
randx);

 Return T
EXTEND (T, x)

nearx = NEAREST(x ,T);

 If NEW_STATE (
newnewnear uxxx ,,,)

 T.add_vertex (
newx);

 T.add_edge (
newnewnear uxx ,,

)

 Fig. 1 Example of a basic RRT algorithm

2.2 Other RRTs
If a dual-tree approach offers advantages over a single

tree, then it is natural to ask whether growing three or more
RRTs might be even better. These additional RRTs could be
started at random states. Of course, the connection problem
will become more difficult for nonholonomic problems.
Also, as more trees are considered, a complicated decision
problem arises. The computation time must be divided
between attempting to explore the space and attempting to
connect RRTs to each other. It is also not clear which
connections should be attempted. Many research issues
remain in the development of this and other RRT-based
planners.

3. RRT FOR REMOTE-CONTROLLED

MOBILE ROBOT

3.1 Kinematics
We consider a mobile robot with a 4-wheel

differential-drive skid-steering configuration, the two wheels
on the same side move in unison, with each pair on opposite
side capable of being driven independently. If both pairs are

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

driven forward with the same speed, then the robot moves
forward, but if they are driven in opposite directions, the robot
will turn in place (i.e., executing a zero-radius turn).

The nominal model equation can be described by the
following Eq. (1).

ωθ
θ

θ 














+
















=

















1
0
0

0
sin
cos

vy
x

&

&

&
 (1)

The state vector TyxX][θ= represents the robot

position and orientation. The control inputs applied to the
mobile robot are Tvu][ω= where v is the translational
velocity and ω is the rotational velocity of the robot.

3.2 Implementation of RRT
When we consider not the autonomous mobile robot but

the remote-controlled mobile robot (RC-mobile robot), it has
to keep the commanded translational and rotational velocities
and avoid some obstacles such as static walls and dynamic
moving obstacles (e.g., cars, people).

Most existing collision avoidance methods are purely
reactive in the sense that they search for safe robot control
commands based on the robot’s current proximity sensor data
without any projection of the robot’s future state. These
methods differ in the way this search is carried out. The Vector
Field Histogram method [7] and Potential filed methods [8] do
not explicitly take the constraints imposed by the dynamics of
the robot into account. Another popular method is the dynamic
window approach to collision avoidance [9]. This method
searches for the trajectory the robot should take within the
next time step based on a local map of the robot’s surrounding
built from the latest sensor measurements. In order to reduce
the search space, the robot’s dynamic constraints are taken
into account by considering only velocities which can be
reached within the next time interval. Konolidge [10] uses
dynamic programming on the local map to compute the
gradient towards the target. To make this approach
computationally feasible only the two dimensional space of
possible robot positions is considered for planning.

As mentioned in Section 2, RRT algorithms have the
advantage that they can be directly applied to nonholonomic
and kinodynamic planning. We will suggest a method that
effectively modifies the basic RRT to be used for the
RC-mobile robot and simultaneously plans collision free paths
and takes the kinematic constraints of the robot into account.

There are several issues in the application of RRT
algorithms. The main issues that should be considered to
improve the performance of algorithms are as followings:

 - sampling strategy (bias technique)
 - metric choice
 - input selection

Sampling strategy is related with how to bias the

probability distribution density of random samples. The
original RRT has a uniform random distribution and takes a
long time to find a path to the goal. Some methods were
suggested to improve the computational time. The goal-biased
technique simply can be applied by the assignment the
probability at the goal point [3]. And also, adaptive sampling
bias technique was suggested with applications to test
generation [11]. They initially bias the distribution so that
states near the unsafe set are selected and monitor the growth

of the tree. As the growth rate of the tree declines, the
sampling distribution is less biased.

To find a metric that yields good performance can be a very
difficult task. The ideal metric is the optimal cost-to-go, which
is the optimal cost for the robot to move from one state to
another state [6]. Calculating the optimal cost-to-go is at least
the same difficulty as the trajectory design problem. In general,
a simple Euclidean metric is used. For a particular system, it
may be possible to derive a metric from several alternatives,
including a Lyapunov function, a steering method, a fitted
spline curve, or an optimal control law for a locally-linearized
system. In [12], the cost-to-go function from a hybrid
controller was used as the metric in an RRT to generate
efficient plans for a nonlinear model of a helicopter.

Input selection to make a motion toward a randomly
selected state from the nearest neighbor state and minimize the
distance between them can be chosen at random, or selected
by trying all possible inputs and choosing the one that yields a
new state as close as possible to the sample (if the input range
is infinite, then a finite approximation or analytical technique
can be used). The determined state by the input implicitly uses
the collision detection function to determine whether the new
state satisfy the global constraints

We consider the practical implementation of a RRT

algorithm for the remote-controlled mobile robot. In this case,
the situation is so different from the autonomous mobile case.
We assume the followings.

Assumptions:
- The mobile robot has a differential drive configuration.
- The translational and rotational velocities are limited.
- The translational and rotational accelerations are also

limited.
- The mobile robot receives the target velocity commands

every one second from the remote operator.
- The mobile robot knows the environments from various

sensors.
- The mobile robot knows its position and attitude.

We need to modify a RRT algorithm in order to adapt the

above assumptions in a remote-controlled mobile. These
assumptions make the path planning as a local path planning
and collision avoidance in some aspects. Next are our
modifications on the RRT factors in this paper.

Bias Technique
Most of RRTs have a uniform distribution over the

configuration space or a goal-biased Gaussian distribution as
selecting a random state. In our case, we assumed that the
RC-mobile robot receives the translational and angular
velocity commands from the operator every one second (t∆).
These commands indicate the direction of the goal region after
one second. A simple goal region bias technique is utilized in
selecting a random state

randx . It has a Gaussian distribution
centered along the commanded direction. The mean and
standard deviation of the distribution can be calculated as
shown in Eqs. (2) ~ (4).

),(~ σµNxrand

, (2)
where µ is mean and σ is standard deviation.

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

cur
c

c x
v

t
+
























∆
∆
∆

=
ω

θ
θ

αµ
0

0)sin(
0)cos(

 (3)


























∆
∆
∆

=
c

cv

t
ω

θ
θ

ασ
0

0)sin(
0)cos(

 (4)

where,
:cv commanded translational velocity

:cω commanded rotational velocity

:α direction scaling factor
tc∆+=∆ ωθθ

Choice of Metric
Metrics are used when we choose the nearest vertex and

select a control input that produces a new state near a random
state. Finding metrics that yield good performance can be a
very difficult task. Generally, the same metrics are used in
those steps. In this paper, different metrics are used. In case of
choosing the nearest vertex, a simple metric based on a
weighted Euclidean distance of state is utilized. But in case of
selecting a control input, the distance between the nearest state

nearx and the goal region state
goalx that normalized with

respect to the distance between
nearx and

newx is added.
This improves the performance of exploring to the goal region.
Eq. (5) shows the metric that is used in the routine of finding
the nearest vertex and Eq. (6) shows the metric that is used in
the routine of selecting the control input.

2randnearnear xx −=ρ (5)

22 goalneargrandnearinput xxwxx −+−=ρ , (6)

where,
gw is weighting factor

Input Selection
The control input that drives the system slightly toward

randomly-selected points is usually selected randomly. From a
practical point of view, it is necessary to consider the
constraints of inputs in path planning. We considers the
constraints of the maximum velocity

maxv and the maximum
acceleration

maxa . Table 2 shows the input selection
algorithm that takes these control input constraints and the
commanded velocities into account.

Heuristically Pruning the Tree
As performing the input selection algorithm presented in

Table 2, the function CALCULATE_MINIMUM_METRIC
_INPUT simulates the mobile robot actuated by the selected
control input

tu that meets constraints. If the calculated
states of the mobile robot are occupied by a wall or other
obstacles, This control input is invalid. The number of invalid
input that occurred during the Select_Input loop is counted
and characterized in the tree vertex. This information is used
in the NEAREST routine that finds the nearest vertex from the
randomly selected state in Table 1. If the invalid input count is
over the predetermined percentage γ of all tried inputs, this
vertex is pruned from the tree and will not be selected after
then. This strategy that pruning the tree could make the overall
computational time fast and prevent the mobile robot from
being trapped in the local minimum.

Table 2 Input Selection Algorithm

Select_Input (

maxmax ,,,,, avvxx ccnearrand ω)

For k = 1 to K1 do

randu =
maxa * UNIT_RANDOM();

randct uvu += ;

 If
maxvut ≥

maxvut = ;

CALCULATE_MINIMUM_METRIC_INPUT(

tu);

 Return u

4. SIMULATION RESULTS

We performed various simulations to identify the effect of

different factors in designing a RRT algorithm for a
remote-controlled mobile robot.

The parameters that used in simulations are shown in Table
3.

Table 3 Simulation Parameters

Parameter Value

maxtv maximum translational velocity]/[1 sm

maxav maximum angular velocity]/[
2

sradπ

maxta maximum translational acceleration]/[5.0 2sm

maxaa maximum angular acceleration]/[
4

2sradπ

t∆ path planning step time [sec]1

aw angular distance weighting factor 0.7

gw weighting factor in
inputρ 1

γ percentage in pruning tree routine 80 [%]
ε goal region radius 0.5
K maximum loop count 1500

K1 number of the randomly selected
inputs 100

α goal region direction weighting
factor 5

Next subsections show the effect of the factors that have an

influence on the algorithm’s performance.

4.1 Comparison of Different Bias Techniques
First, we consider the effect of random state bias. The

mobile robot initially locates in the state Tx],4,3[0 π= . It is
assumed that the mobile robot receives a command velocities
and calculates the goal region near the state T

goalx]0,8,3[= .

Fig. 2 shows the result when we choose the goal-biased
Gaussian distribution and Fig. 3 shows when we choose
random distribution over the configuration space. We adapt
the same random input sequences and take the same
simulation conditions except the distribution. We can know
that the goal-biased distribution gives better performances
than the random distribution. First case directly goes to the
goal region, but second case explores wide areas and takes
much time to perform the algorithm.

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

4.2 Comparison of Different Metric Choice
To identify the effect of metric choices, we performed the

following simulation. We also let the simulation conditions
same for both cases except the input selection metric. The
mobile robot initially locates in the state Tx]0,8,1[0 = . It is
assumed that the mobile robot receives a command velocities
and calculates the goal region near the state T

goalx]0,5.7,8[= .

Fig. 4 shows the results in the case of adding the weighting
factor

gw when we choose the control input as you can see

in Table 2. We can know that the robot directly moves toward
the goal. However, If the weighting factor is removed, as you
can see in Fig. 5, the robot produces zigzag trajectory.

4.3 The Effects of Pruning Tree
To reduce the computational time, it could be need to get

rid of the invalid vertexes in tree. As we referred in Section 3,
we performed simulation to know how the pruning tree can
increase the performance. The mobile robot initially locates in
the state Tx]2/,2,5.4[0 π= . It is assumed that the mobile
robot receives a command velocities and calculates the goal
region near the state T

goalx]2/,8,1[π= . Fig. 6 shows the

simulation result without pruning process. In the center of the
configuration space, there are many vertexes tried to expand
the tree, but, they failed to extend any more. In order to make
the nearest search routine effectively, we removed the vertexes
that counted invalid trials over 80 [%]. As you can see in Fig.
7, this process improved the performance of the exploration
and reduced the computational time over 20 [%] than the
result without pruning tree.

0 2 4 6 8 10
0

2

4

6

8

10

 Fig. 2 Simulation result with goal-biased Gaussian
distribution

0 2 4 6 8 10
0

2

4

6

8

10

 Fig. 3 Simulation result with random distribution

0 2 4 6 8 10
0

2

4

6

8

10

 Fig. 4 Simulation result with weighting factor in the

input selection

0 2 4 6 8 10
0

2

4

6

8

10

 Fig. 5 Simulation result without weighting factor in the

input selection

0 2 4 6 8 10
0

2

4

6

8

10

 Fig. 6 Simulation result without pruning tree

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

0 2 4 6 8 10
0

2

4

6

8

10

 Fig. 7 Simulation result with pruning tree

5. CONCLUSION

We proposed a path planning algorithm based on the RRT
method for a remote-controlled mobile robot. First, we
considered a bias technique that is goal-biased Gaussian
random distribution along the command directions. Secondly,
we selected the metric based on a weighted Euclidean distance
of random states and a weighted distance from the goal region.
It can save the effort to explore the unnecessary regions and
help the mobile robot to find a feasible trajectory as fast as
possible. Finally, the kinematic constraints of the mobile robot
and the constraints of the control inputs were considered in
order to apply the algorithm to physical mobile robots.
Simulation results demonstrate that the proposed algorithm is
significantly more efficient for planning than a basic RRT
planner. It reduces the computational time needed to find a
feasible trajectory and can be practically implemented in a
remote-controlled mobile robot.

In the future, we plan to experiment with a physical mobile
robot to identify the performance of the proposed algorithm.

REFERENCES

[1] S. M. LaValle and J. J. Kuffner, “Rapidly- exploring
random trees: A new tool for path planning,” TR 98-11,
Computer Science Dept., Iowa State University, Oct.
1998.

[2] J. J. Kuffner and S. M. LaValle, “RRT-connect: An
efficient approach to single-query path planning,” Proc.
IEEE Int’l Conf. on Robotics and Automation, pp.
995-1001, 2000.

[3] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring
random trees: Progress and prospects,” In B. R. Donald,
K. M. Lynch, and D. Rus, editors, Algorithmic and
Computational Robotics: New Directions, pp. 293-308,
A K Peters, Wellesley, MA, 2001.

[4] M. S. Branicky, M. M. Curtiss, J. Levine, and S. Morgan,
“RRTs for nonlinear, discrete, and hybrid planning and
control,” Proc. IEEE Conf. Decision and Control,
December 9-12, 2003.

[5] J. M. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs
for validating hybrid robotic control systems,” In Int’l
Workshop on the Algorithmic Foundations of Robotics
2004, Netherlands, 2004.

[6] Peng Cheng, “Reducing metric sensitivity in randomized
trajectory design,” Proc. Of the 2001 IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems, pp. 43-48,
2001.

[7] J. Borenstein and Y. Koren, “The vector field
histogram-fast obstacle avoidance for mobile robots,”
IEEE Journal of Robotics and Automation, Vol. 7, No. 3,
pp. 278-288, 1991.

[8] J.-C. Latombe, Robot Motion Planning, Kluwer
Academic Publishers, Boston, MA, 1991.

[9] D. Fox, W. Burgard, and S. Thrun, “The dynamic
window approach to collision avoidance,” IEEE
Robotics and Automation Magazine, Vol. 4, No. 1, 1997.

[10] K. Konolige, “A gradient method for real-time robot
control,” In Proc. of IEEE/JSR Conf. on Intelligent
Robots and Systems, 2000.

[11] Jongwoo Kim and Joel M. Esposito, "Adaptive sample
bias for rapidly-exploring random trees with
applications to test generation," American Control
Conference, 2005

[12] E. Frazzoli, M.A. Dahleh, and E. Feron,. ”Robust
Hybrid Control for Autonomous Vehicle Motion
Planning,” In IEEE Conf. on Decision and Control,
Sydney, Australia, pp. 821-826, 2000

