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1. INTRODUCTION 
 
The increasing performance of microprocessor and 

development of various sensors enable mobile robots to be 
used for various areas. In indoor cases, personal service robots 
perform the missions of museum tour guide, room cleaning 
and nursing for the elderly. In outdoor cases, mobile robots 
have been used for the purpose of patrol, reconnaissance, 
surveillance and exploring planets, etc. The remote-controlled 
mobile robots that are operated by the remote operators should 
be able to navigate with commanded translational and 
rotational velocities and perceive static and varying 
environments and avoid dynamic obstacles such as vehicles or 
pedestrians. 

Mobile robots often find themselves in a situation where 
they must find a trajectory to another position in their 
environments, subject to constraints posed by obstacles and 
the capabilities of the robot itself. Rapidly-exploring Random 
Trees (RRTs) are a recently developed representation on which 
fast continuous domain path planners can be based and a 
randomized data structure that is designed for a broad class of 
a path planning problems [1-3]. The advantage of RRTs is that 
they can be directly applied to nonholonomic and 
kinodynamic planning. Moreover, RRTs has been used to 
solve nonlinear control problems and extended to the case of 
hybrid systems [4-5]. 

The original RRT is iteratively expanded by applying 
control inputs that drive the system slightly toward 
randomly-selected states, as opposed to requiring 
point-to-point convergence, as in the probabilistic roadmap 
approach. It is generally known that the performance of RRTs 
can be improved depending on the selection of the metrics in 
choosing the nearest vertex and bias techniques in choosing 
random states [6]. 

We designed a path planning algorithm based on the RRT 
method for a remote-controlled mobile robot. First, we 

considered a bias technique that is goal-biased Gaussian 
random distribution along the command directions. Secondly, 
we selected the metric based on a weighted Euclidean distance 
of random states and a weighted distance from the goal region. 
It can save the effort to explore the unnecessary regions and 
help the mobile robot to find a feasible trajectory as fast as 
possible. Finally, the constraints of the actuator should be 
considered to apply the algorithm to physical mobile robots, 
so we select control inputs distributed with commanded inputs 
and constrained by the maximum rate of input change instead 
of random inputs. Simulation results demonstrate that the 
proposed algorithm is significantly more efficient for planning 
than a basic RRT planner. It reduces the computational time 
needed to find a feasible trajectory and can be practically 
implemented in a remote-controlled mobile robot. 

The remainder of this paper is organized as follows. 
Section 2 introduces a brief formulation of the RRT algorithm. 
Section 3 considers the kinematics and practical 
implementation of a RRT for a remote-controlled mobile robot. 
Section 4 presents the simulation results. Finally, some 
conclusions are presented in Section 5. 

 
2. RRT ALGORITHM 

 
2.1 Basic RRT Algorithm 
 
2.1.1 Problem Description 

The class of problems considered in RRTs can be 
formulated in terms of six components [3]: 

1) State Space: A bounded manifold, nRX ⊂  
2) Boundary Values: Xxinit ∈  and XX goal ⊂  

3) Collision Detector: A function, →XD : },{ falsetrue , 
that determines whether global constraints are satisfied 
from state x . This could alternatively be a real-valued 
function that indicates distance from the constraint 
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boundary. 
4) Inputs: A set, U , which specifies the complete set of 

controls or actions that can affect the state. 
5) Incremental Simulator: Given the current state, )(tx , 

and inputs applied over a time interval, 
}'|)'({ tttttu ∆+≤≤ , the incremental simulator yields 

)( ttx ∆+ . This usually occurs through numerical 
integration of a state transition equation, ),( uxfx =& . 

6) Metric: A real-valued function, ),0[: ∞→× XXρ  
which specifies the distance between pairs of points in X  
(however, ρ  is not necessarily symmetric). 

 
Trajectory planning will generally be viewed as a search in 

a state space, X , for a control u  that brings the system 
from an initial state, 

initx  to a goal region XX goal ⊂  or 

goal state XX goal ∈ . It is assumed that a complicated set of 

global constraints is imposed on X , and any solution path 
must keep the state within this set. A collision detector reports 
whether a given state x  satisfies the global constraints. Local, 
differential constraints are imposed through the definition of a 
set of inputs (or controls) and an incremental simulator. Taken 
together, these two components specify possible changes in 
state. The incremental simulator can be defined by numerical 
integration of a state transition equation of the form 

),( uxfx =&  or can simply be achieved by a simulation 
software package. Finally, a metric is defined to indicate the 
closeness of pairs of points in the state space. 

 
2.1.2 Basic RRT Algorithm 
The basic RRT construction algorithm is given in Table 1 

[1]. A simple iteration is performed in which each step 
attempts to extend the RRT by adding a new vertex that is 
biased by a randomly-selected state, Xxrand ∈ . The EXTEND 
function selects the nearest vertex already in the RRT to x . 
The “nearest” vertex is chosen according to the metric, ρ . 
The function NEW_STATE makes a motion toward x  by 
applying an input Uu ∈  for some time increment t∆ . This 
input can be chosen at random, or selected by trying to all 
possible inputs and choosing the one that yields a new state as 
close as possible to the sample, 

randx  (if U  is infinite, then 
a finite approximation or analytical technique can be used). 
NEW_STATE implicitly uses the collision detection function 
to determine whether the new state and all intermediate states 
satisfy the global constraints. For many problems, this can be 
performed quickly (“almost constant time”) using incremental 
distance computation algorithms by storing the relevant 
invariants with each of the RRT vertices. If NEW_STATE is 
successful, the new state and input are represented in 

newx  
and 

newu , respectively. Figure 1 shows an RRT grown from 
the center of a square region in the plane. In this example, 
there are no differential constraints (motion in any direction is 
possible from any point). The incremental construction 
method biases the RRT to rapidly explore in the beginning, 
and then converge to a uniform coverage of the space. The 
exploration is naturally biased towards vertices that have 
larger Voronoi regions. This causes the exploration to occur 
mostly on the unexplored portion of the state space. 

In addition to growing a tree from the starting state, many 
RRT implementations grow a second tree from the goal tree. 
Such trees grow in four steps. 

1) Grow start-tree towards a random unexplored 
configuration. 

2) Grow goal-tree towards a random unexplored 
configuration. 

3) Grow start tree towards goal tree. At each iteration, 
select a random vertex in the goal tree to grow towards it. 

4) Grow goal tree towards start tree. A solution path is 
found when the two trees finally connect. 

 
  Table 1 The Basic RRT Algorithm 
 

Build_RRT (
initx ) 

    T.init (
initx ); 

    For  k = 1 to K  do 
        

randx  = RANDOM_STATE(); 

        EXTEND (T,
randx ); 

    Return T 
EXTEND (T, x ) 
    

nearx  =  NEAREST( x ,T); 

    If  NEW_STATE (
newnewnear uxxx ,,, ) 

        T.add_vertex (
newx ); 

        T.add_edge (
newnewnear uxx ,,

) 

 

 
         Fig. 1 Example of a basic RRT algorithm 

2.2 Other RRTs 
If a dual-tree approach offers advantages over a single 

tree, then it is natural to ask whether growing three or more 
RRTs might be even better. These additional RRTs could be 
started at random states. Of course, the connection problem 
will become more difficult for nonholonomic problems. 
Also, as more trees are considered, a complicated decision 
problem arises. The computation time must be divided 
between attempting to explore the space and attempting to 
connect RRTs to each other. It is also not clear which 
connections should be attempted. Many research issues 
remain in the development of this and other RRT-based 
planners. 

 
3. RRT FOR REMOTE-CONTROLLED 

MOBILE ROBOT 
 

3.1 Kinematics  
We consider a mobile robot with a 4-wheel 

differential-drive skid-steering configuration, the two wheels 
on the same side move in unison, with each pair on opposite 
side capable of being driven independently. If both pairs are 
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driven forward with the same speed, then the robot moves 
forward, but if they are driven in opposite directions, the robot 
will turn in place (i.e., executing a zero-radius turn). 

The nominal model equation can be described by the 
following Eq. (1). 
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The state vector TyxX ][ θ=  represents the robot 

position and orientation. The control inputs applied to the 
mobile robot are Tvu ][ ω=  where v  is the translational 
velocity and ω  is the rotational velocity of the robot. 

 
3.2 Implementation of RRT  
When we consider not the autonomous mobile robot but 

the remote-controlled mobile robot (RC-mobile robot), it has 
to keep the commanded translational and rotational velocities 
and avoid some obstacles such as static walls and dynamic 
moving obstacles (e.g., cars, people). 

Most existing collision avoidance methods are purely 
reactive in the sense that they search for safe robot control 
commands based on the robot’s current proximity sensor data 
without any projection of the robot’s future state. These 
methods differ in the way this search is carried out. The Vector 
Field Histogram method [7] and Potential filed methods [8] do 
not explicitly take the constraints imposed by the dynamics of 
the robot into account. Another popular method is the dynamic 
window approach to collision avoidance [9]. This method 
searches for the trajectory the robot should take within the 
next time step based on a local map of the robot’s surrounding 
built from the latest sensor measurements. In order to reduce 
the search space, the robot’s dynamic constraints are taken 
into account by considering only velocities which can be 
reached within the next time interval. Konolidge [10] uses 
dynamic programming on the local map to compute the 
gradient towards the target. To make this approach 
computationally feasible only the two dimensional space of 
possible robot positions is considered for planning. 

As mentioned in Section 2, RRT algorithms have the 
advantage that they can be directly applied to nonholonomic 
and kinodynamic planning. We will suggest a method that 
effectively modifies the basic RRT to be used for the 
RC-mobile robot and simultaneously plans collision free paths 
and takes the kinematic constraints of the robot into account. 

There are several issues in the application of RRT 
algorithms. The main issues that should be considered to 
improve the performance of algorithms are as followings: 

 
 - sampling strategy (bias technique) 
 - metric choice 
 - input selection 
 
Sampling strategy is related with how to bias the 

probability distribution density of random samples. The 
original RRT has a uniform random distribution and takes a 
long time to find a path to the goal. Some methods were 
suggested to improve the computational time. The goal-biased 
technique simply can be applied by the assignment the 
probability at the goal point [3]. And also, adaptive sampling 
bias technique was suggested with applications to test 
generation [11]. They initially bias the distribution so that 
states near the unsafe set are selected and monitor the growth 

of the tree. As the growth rate of the tree declines, the 
sampling distribution is less biased.  

To find a metric that yields good performance can be a very 
difficult task. The ideal metric is the optimal cost-to-go, which 
is the optimal cost for the robot to move from one state to 
another state [6]. Calculating the optimal cost-to-go is at least 
the same difficulty as the trajectory design problem. In general, 
a simple Euclidean metric is used. For a particular system, it 
may be possible to derive a metric from several alternatives, 
including a Lyapunov function, a steering method, a fitted 
spline curve, or an optimal control law for a locally-linearized 
system. In [12], the cost-to-go function from a hybrid 
controller was used as the metric in an RRT to generate 
efficient plans for a nonlinear model of a helicopter. 

Input selection to make a motion toward a randomly 
selected state from the nearest neighbor state and minimize the 
distance between them can be chosen at random, or selected 
by trying all possible inputs and choosing the one that yields a 
new state as close as possible to the sample (if the input range 
is infinite, then a finite approximation or analytical technique 
can be used). The determined state by the input implicitly uses 
the collision detection function to determine whether the new 
state satisfy the global constraints 

 
We consider the practical implementation of a RRT 

algorithm for the remote-controlled mobile robot. In this case, 
the situation is so different from the autonomous mobile case. 
We assume the followings. 

 
Assumptions: 
- The mobile robot has a differential drive configuration. 
- The translational and rotational velocities are limited. 
- The translational and rotational accelerations are also 

limited. 
- The mobile robot receives the target velocity commands 

every one second from the remote operator. 
- The mobile robot knows the environments from various 

sensors. 
- The mobile robot knows its position and attitude. 
 
We need to modify a RRT algorithm in order to adapt the 

above assumptions in a remote-controlled mobile. These 
assumptions make the path planning as a local path planning 
and collision avoidance in some aspects. Next are our 
modifications on the RRT factors in this paper. 

 
Bias Technique 
Most of RRTs have a uniform distribution over the 

configuration space or a goal-biased Gaussian distribution as 
selecting a random state. In our case, we assumed that the 
RC-mobile robot receives the translational and angular 
velocity commands from the operator every one second ( t∆ ). 
These commands indicate the direction of the goal region after 
one second. A simple goal region bias technique is utilized in 
selecting a random state 

randx . It has a Gaussian distribution 
centered along the commanded direction. The mean and 
standard deviation of the distribution can be calculated as 
shown in Eqs. (2) ~ (4). 

 
),(~ σµNxrand

,                           (2) 
where µ is mean and σ  is standard deviation. 
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where, 
:cv  commanded translational velocity 

:cω  commanded rotational velocity 

:α  direction scaling factor 
tc∆+=∆ ωθθ  

 
Choice of Metric 
Metrics are used when we choose the nearest vertex and 

select a control input that produces a new state near a random 
state. Finding metrics that yield good performance can be a 
very difficult task. Generally, the same metrics are used in 
those steps. In this paper, different metrics are used. In case of 
choosing the nearest vertex, a simple metric based on a 
weighted Euclidean distance of state is utilized. But in case of 
selecting a control input, the distance between the nearest state 

nearx  and the goal region state 
goalx  that normalized with 

respect to the distance between 
nearx  and 

newx  is added.  
This improves the performance of exploring to the goal region. 
Eq. (5) shows the metric that is used in the routine of finding 
the nearest vertex and Eq. (6) shows the metric that is used in 
the routine of selecting the control input. 

 

2randnearnear xx −=ρ                     ( 5 ) 

22 goalneargrandnearinput xxwxx −+−=ρ ,         ( 6 ) 

where, 
gw is weighting factor 

 
Input Selection 
The control input that drives the system slightly toward 

randomly-selected points is usually selected randomly. From a 
practical point of view, it is necessary to consider the 
constraints of inputs in path planning. We considers the 
constraints of the maximum velocity 

maxv  and the maximum 
acceleration 

maxa . Table 2 shows the input selection 
algorithm that takes these control input constraints and the 
commanded velocities into account. 

 
Heuristically Pruning the Tree 
As performing the input selection algorithm presented in 

Table 2, the function CALCULATE_MINIMUM_METRIC 
_INPUT simulates the mobile robot actuated by the selected 
control input 

tu  that meets constraints. If the calculated 
states of the mobile robot are occupied by a wall or other 
obstacles, This control input is invalid. The number of invalid 
input that occurred during the Select_Input loop is counted 
and characterized in the tree vertex. This information is used 
in the NEAREST routine that finds the nearest vertex from the 
randomly selected state in Table 1. If the invalid input count is 
over the predetermined percentage γ  of all tried inputs, this 
vertex is pruned from the tree and will not be selected after 
then. This strategy that pruning the tree could make the overall 
computational time fast and prevent the mobile robot from 
being trapped in the local minimum. 

 
Table 2 Input Selection Algorithm 

 
Select_Input (

maxmax ,,,,, avvxx ccnearrand ω ) 

For k = 1 to K1 do 

randu  = 
maxa  *  UNIT_RANDOM(); 

randct uvu += ; 

        If 
maxvut ≥  

            
maxvut = ; 

        
CALCULATE_MINIMUM_METRIC_INPUT(

tu ); 

    Return u  

 
 

4. SIMULATION RESULTS 
 
We performed various simulations to identify the effect of 

different factors in designing a RRT algorithm for a 
remote-controlled mobile robot. 

The parameters that used in simulations are shown in Table 
3. 

 
Table 3 Simulation Parameters 
 

Parameter Value 

maxtv  maximum translational velocity ]/[1 sm

maxav  maximum angular velocity ]/[
2

sradπ

maxta  maximum translational acceleration ]/[5.0 2sm

maxaa  maximum angular acceleration ]/[
4

2sradπ

t∆  path planning step time [sec]1

aw  angular distance weighting factor 0.7

gw  weighting factor in 
inputρ  1

γ  percentage in pruning tree routine 80 [%]
ε  goal region radius 0.5
K maximum loop count 1500

K1 number of the randomly selected 
inputs 100

α  goal region direction weighting 
factor 5

 
Next subsections show the effect of the factors that have an 

influence on the algorithm’s performance. 
 
4.1 Comparison of Different Bias Techniques 
First, we consider the effect of random state bias. The 

mobile robot initially locates in the state Tx ],4,3[0 π= . It is 
assumed that the mobile robot receives a command velocities 
and calculates the goal region near the state T

goalx ]0,8,3[= . 

Fig. 2 shows the result when we choose the goal-biased 
Gaussian distribution and Fig. 3 shows when we choose 
random distribution over the configuration space. We adapt 
the same random input sequences and take the same 
simulation conditions except the distribution. We can know 
that the goal-biased distribution gives better performances 
than the random distribution. First case directly goes to the 
goal region, but second case explores wide areas and takes 
much time to perform the algorithm. 
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4.2 Comparison of Different Metric Choice 
To identify the effect of metric choices, we performed the 

following simulation. We also let the simulation conditions 
same for both cases except the input selection metric. The 
mobile robot initially locates in the state Tx ]0,8,1[0 = . It is 
assumed that the mobile robot receives a command velocities 
and calculates the goal region near the state T

goalx ]0,5.7,8[= . 

Fig. 4 shows the results in the case of adding the weighting 
factor 

gw  when we choose the control input as you can see 

in Table 2. We can know that the robot directly moves toward 
the goal. However, If the weighting factor is removed, as you 
can see in Fig. 5, the robot produces zigzag trajectory.  

 
4.3 The Effects of Pruning Tree 
To reduce the computational time, it could be need to get 

rid of the invalid vertexes in tree. As we referred in Section 3, 
we performed simulation to know how the pruning tree can 
increase the performance. The mobile robot initially locates in 
the state Tx ]2/,2,5.4[0 π= . It is assumed that the mobile 
robot receives a command velocities and calculates the goal 
region near the state T

goalx ]2/,8,1[ π= . Fig. 6 shows the 

simulation result without pruning process. In the center of the 
configuration space, there are many vertexes tried to expand 
the tree, but, they failed to extend any more. In order to make 
the nearest search routine effectively, we removed the vertexes 
that counted invalid trials over 80 [%]. As you can see in Fig. 
7, this process improved the performance of the exploration 
and reduced the computational time over 20 [%] than the 
result without pruning tree. 
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  Fig. 2 Simulation result with goal-biased Gaussian 
distribution 
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 Fig. 3 Simulation result with random distribution 
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  Fig. 4 Simulation result with weighting factor in the 

input selection 
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 Fig. 5 Simulation result without weighting factor in the 

input selection 
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  Fig. 6 Simulation result without pruning tree 
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   Fig. 7 Simulation result with pruning tree 
 
 

5. CONCLUSION 
 

We proposed a path planning algorithm based on the RRT 
method for a remote-controlled mobile robot. First, we 
considered a bias technique that is goal-biased Gaussian 
random distribution along the command directions. Secondly, 
we selected the metric based on a weighted Euclidean distance 
of random states and a weighted distance from the goal region. 
It can save the effort to explore the unnecessary regions and 
help the mobile robot to find a feasible trajectory as fast as 
possible. Finally, the kinematic constraints of the mobile robot 
and the constraints of the control inputs were considered in 
order to apply the algorithm to physical mobile robots. 
Simulation results demonstrate that the proposed algorithm is 
significantly more efficient for planning than a basic RRT 
planner. It reduces the computational time needed to find a 
feasible trajectory and can be practically implemented in a 
remote-controlled mobile robot. 

In the future, we plan to experiment with a physical mobile 
robot to identify the performance of the proposed algorithm. 
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